Isodata-Based Method for Clustering Surveys Responses with Mixed Data: The 2021 StackOverflow Developer Survey
DOI:
https://doi.org/10.13053/cys-27-1-4539Palabras clave:
Clustering, isodata, mixed data clusteringResumen
Massive amounts of data are generated every day from all kinds of sources, from numerical data generated by sensors to veiled messages on social networks. Transforming these data into properly organized pieces of information and transforming it into resources for decision-making is complicated, not only because of the speed and volume at which it is produced, but due to the fact the high complexity of the context in which it is generated. Often, the first step in analyzing the data is to separate it into categories that correspond to segments of interest in that context. However, in many real cases, the limits of these segments and even the number of existing segments is unknown. Clustering techniques allow defining the classes of entities in a data set with sufficient relevance. However, those techniques usually work only with numerical data. Surveys are a very useful tool for collecting data in ill-defined contexts, but these data usually contain values that are not only numerical but of a very diverse nature. This paper presents a modification to the Isodata method to process data with mixed numerical and categorical values. The resulting algorithm is tested by analyzing the results of the 2021 Stack Overflow developer survey. The results obtained in the clustering of such data are sound and show that the Isodata method, with the proposed adaptations, can be successfully employed to discover patterns in complex mixed data.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.