Edges-enhanced Convolutional Neural Network for Multiple Sclerosis Lesions Segmentation
DOI:
https://doi.org/10.13053/cys-27-1-4535Palabras clave:
Convolutional neural networks, focal loss, multiple sclerosis, lesions segmentation, magnetic resonance imagingResumen
Multiple sclerosis (MS) segmentation is a crucial task that helps to monitor the progression of that condition and to investigate how efficient is the treatment provided to a patient. Convolutional Neural Networks (CNN) have been successfully employed in MS lesion segmentation in recent years, but still have problems in segmenting voxels in the boundaries of the lesions. In this work, we present a modified CNN that assign more importance in learning hard-to-classify voxels close to the boundaries of the MS lesions. During the training process, we performed a stratified sampling to dynamically increase the penalization of voxels in the neighborhood around MS lesions boundaries. We prove that the stratified sampling strategy increases the representation of voxels near to the neighborhood of the edges and retrieves more accurate results in terms of Dice similarity coefficient compared to existing methods that uses uniform sampling. To test our approach, the 2015 Longitudinal MS Lesion Segmentation Challenge dataset was used, obtaining Dice > 0.7, which is comparable to the performance of human experts.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.