Minería de datos y aprendizaje máquina aplicado en la predicción de salud mental en trabajadores de Tecnologías de la Información
DOI:
https://doi.org/10.13053/cys-29-3-4520Palabras clave:
Salud mental, predicción de salud mental, minería de datos, trabajadores de TI, machine learningResumen
En la actualidad la salud mental es un problema cada vez más frecuente en las personas. Trastornos mentales tales como los de ansiedad y depresión tienden a contribuir a los cambios de comportamiento relacionados con su trabajo, como la reducción del nivel de actividad y el mal rendimiento. El objetivo de esta investigación es medir las actitudes respecto la salud mental en el área de TI. Como técnicas de selección de atributos se usó el filtro ANOVA F-test y el filtro Chi-Cuadrado, para el modelado se aplicaron los algoritmos de K-Nearest Neighbor (KNN), Decision Tree, Support Vector Machine (SVM), Naive Bayes y Neural Network. Se trabajó con un conjunto de datos obtenidos de OSMH/OSMI Mental Health in Tech Survey, el cual contó con alrededor de 1400 respuestas, estos resultados fueron obtenidos de una encuesta llevada a cabo en el 2016. El algoritmo que obtuvo los mejores resultados en el conjunto de datos analizados fue Neural Network. Como métricas del modelo se obtuvo un F1-Score del 85.92%, un área bajo la curva ROC de 0.903, un menor valor de falsos negativos con 23 y mayor valor de verdaderos positivos con 119 en la matriz de confusión.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.