Automatic Detection of Vehicular Traffic Elements based on Deep Learning for Advanced Driving Assistance Systems

Authors

  • Laura Cleofas-Sánchez Tecnológico de Estudios Superiores de Tianguistenco
  • Juan Pablo Francisco Posadas-Durán Instituto Politécnico Nacional
  • Pedro Martínez-Ortiz Instituto Politécnico Nacional
  • Gilberto Loyo-Desiderio Instituto Politécnico Nacional
  • Eduardo Alberto Ruvalcaba-Hernández Instituto Politécnico Nacional
  • Omar González Brito Tecnológico de Estudios Superiores de Tianguistenco

DOI:

https://doi.org/10.13053/cys-27-3-4508

Keywords:

YOLOv3, automobile detection assistance, object recognition, deep learning

Abstract

This paper presents a prototype of an automobile driver assistance system based on YOLOv3. The system detects car types, traffic signs, and traffic lights in real-time and warns the driver accordingly. In the learning phase of the YOLO algorithm, the standard weights are learned first, followed by transfer learning to the objects of interest. The retraining phase uses 2,800 images obtained from the Internet of three countries of the real-life, and the testing phase uses real-time videos of Mexico City roads. In the validation phase, the proposed system achieves 95%, 37%, and 40% performance on the compiled dataset for the detection of road elements. The results obtained are comparable and in some cases better than those reported in previous works. Using a Raspberry Pi 4, the prototype was tested in real-life, generating visual and audible warnings for the driver, with an object recognition rate of 0.4 fps. A mean average precision (mAP) of 53% was reached by the proposed system. The experiments showed that the prototype achieved a poor recognition rate and required high computational processing for object recognition. However, YOLO is a model that can have good performance on low-resource hardware.

Author Biographies

Juan Pablo Francisco Posadas-Durán, Instituto Politécnico Nacional

Escuela Superior de Ingeniería Mecanica y Eléctrica

Pedro Martínez-Ortiz, Instituto Politécnico Nacional

Escuela Superior de Ingeniería Mecanica y Eléctrica

Gilberto Loyo-Desiderio, Instituto Politécnico Nacional

Escuela Superior de Ingeniería Mecanica y Eléctrica

Eduardo Alberto Ruvalcaba-Hernández, Instituto Politécnico Nacional

Escuela Superior de Ingeniería Mecanica y Eléctrica

Omar González Brito, Tecnológico de Estudios Superiores de Tianguistenco

Escuela Superior de Ingeniería Mecanica y Eléctrica

Downloads

Published

2023-09-25

Issue

Section

Articles