A Domain Specific Parallel Corpus and Enhanced English-Assamese Neural Machine Translation
DOI:
https://doi.org/10.13053/cys-26-4-4423Palabras clave:
English-assamese, low-resource, neural machine translation, parallel corpus, data augmentation, prior alignment, language modelResumen
Machine translation deals with automatic translation from one natural language to another. Neural machine translation is a widely accepted technique of the corpus-based machine translation approach. However, an adequate amount of training data is required, and there is a need for the domain-wise parallel corpus to improve translational performance that shows translational coverages in various domains. In this work, a domain-specific parallel corpus is prepared that includes different domain coverages, namely, Agriculture, Government Office, Judiciary, Social Media, Tourism, COVID-19, Sports, and Literature domains for low-resource English-Assamese pair translation. Moreover, we have tackled data scarcity and word-order divergence problems via data augmentation and prior alignment concept. Also, we have contributed Assamese pre-trained LM, Assamese word-embeddings by utilizing Assamese monolingual data, and a bilingual dictionary-based post-processing step to enhance transformer-based neural machine translation. We have achieved state-of-the-art results for both forward (English-to-Assamese) and backward (Assamese-to-English) directions of translation.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.