Comparing Wavelet Characterization Methods for the Classification of Upper Limb sEMG Signals
DOI:
https://doi.org/10.13053/cys-27-2-4409Palabras clave:
Classification, sEMG, feature extraction, wavelet decomposition, wavelet packetResumen
Analysis of surface electromyography (sEMG) signals is a common practice in biomedical applications for recognizing muscle movement, wavelet coefficients obtained from wavelet transform (WT) or wavelet packet transform (WPT) are used as features of the sEMG signal and classified by means of machine learning models. To the best of our knowledge, no study has fully exploited the resemblance wavelet coefficients have to the signal from which they were obtained. In this context, time domain feature extraction on smaller data lengths can be applied directly to approximation and detail coefficients for different decomposition levels. This can be seen as different frequency band filtered versions of the original signal. The aim of this research is to compare time domain feature extraction of wavelet coefficients obtained from WT and WPT against time domain feature extraction for different frequency bands filtered sEMG signals and determine which approach is most suitable for hand movement recognition. To this end, sEMG signals were decomposed using both the WT (level 6, 'db4') and WPT (level 3, 'db4') methodologies to compare results. The comparison criterion reflects the results of the classification of three machine learning models. Results were obtained by performing supervised multiclass classifications of 18 upper limb movements from 40 subjects, retrieved from the 2nd public database generated for the Ninapro Project. The use of a lower number of coefficients can produce similar performance results as shown when comparing WT vs WPT. In the other hand, time domain feature extraction from filtered sEMG signals using wavelet reconstruction produces slightly better performance on classification results at a higher computational cost.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.