Music Recommender System based on Sentiment Analysis Enhanced with Natural Language Processing Technics
DOI:
https://doi.org/10.13053/cys-27-1-4006Palabras clave:
Natural language processing, neural networks, sentiment analysis, music recommendationResumen
In the field of computer science, many efforts have been made with respect to music recommendation in order to offer the user songs much more in line with his current context or tastes and thus also reduce the large number of musical pieces found on the web. However, there are few studies that take into account the user’s feelings for this task. In this paper we present a model and recommendation system that emphasizes sentiment analysis to make music recommendations using natural language processing, this is achieved by using different artificial intelligence tools such as Word2Vec to vectorize words and neural networks to recognize the sentimental information of the texts. In the results, we show that this approach improves the recommendation results obtained by 80% for the accuracy metrics.Descargas
Archivos adicionales
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.