A Structure-Driven Genetic Algorithm for Graph Coloring

Autores/as

  • José Carlos Aguilar-Canepa Centro de Investigación en Computación
  • Rolando Menchaca-Mendez Centro de Investigación en Computación
  • Ricardo Menchaca-Mendez Centro de Investigación en Computación
  • Jesus García Instituto Nacional de Astrofísica, Óptica y Electrónica, Coordinación de Ciencias Computacionales

DOI:

https://doi.org/10.13053/cys-25-3-3901

Palabras clave:

Genetic algorithms, dynamic programming, graph coloring

Resumen

Genetic Algorithms are well-known numerical optimizers used for a wide array of applications. However, their performance when applied to combinatorial optimization problems is often lackluster. This paper introduces a new Genetic Algorithm (GA) for the graph coloring problem that is competitive, on standard benchmarks, with state-of-the-art heuristics. In particular, we propose a crossover operator that combines two individuals based on random cuts (A, B) of the input graph with small cut-sets. The idea is to combine individuals by merging parts that interact as little as possible so that one individual's goodness does not interfere with the other individual's goodness. Also, we use a selection operator that picks individuals based on the individuals' fitness restricted to the nodes in one of the sets in the partition rather than based on the individuals' total fitness. Finally, we embed local search within the genetic operators applied to both the individuals' sub-solutions chosen to be combined and the individual that results after applying the crossover operator.

Biografía del autor/a

José Carlos Aguilar-Canepa, Centro de Investigación en Computación

Ph. D. student at Network and Data Science Lab

Descargas

Publicado

2021-08-18

Número

Sección

Artículos