A First CNN-based Approach Towards Autonomous Flight for Object Lifting
DOI:
https://doi.org/10.13053/cys-24-3-3482Palabras clave:
MAV, load lifting, deep learningResumen
Cable-suspended load transportation with Micro Air Vehicles (MAV) is a well-studied topic as it reduces mechanical complexity, the weight of the system, and energy consumption. However, it is always taken for granted that the load is already attached tocable. In this work, we present a methodology to autonomously lift a cable-suspended load with a MAV using a Deep-Learning based Object Detector as the perception system, whose detections are used by a PID controller and a state machine to perform the lifting procedure. We report an autonomous lifting success rate of 40%, an encouraging result considering that we carry out this task in a realistic environment, not in simulation. The Object Detector model has been tailored to detect the 2D position and 3D orientation of a bucket-shaped load and trained with a fully synthetic dataset. However, the model is successfully used in the real world. The control system deals with the oscillatory behavior of the cable and ground effects using low-level controllers. Future work includes improvements to the perception system to also detect a hook-shaped grasper.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.