Siamese Convolutional Neural Network for ASL Alphabet Recognition
DOI:
https://doi.org/10.13053/cys-24-3-3481Palabras clave:
Siamese network, CNN, ASL alphabet recognition, similarity learning, deep learningResumen
American sign language is an important communication way to convey information among the deaf community in North America and is primarily used by people who have hearing or speech impairments. The deaf community faces a struggle in schools and other institutions because they usually consist primarily of hearing people. Besides, deaf people often feel misunderstood by people who do not knowsign language, for example, family members. In the last two decades, researchers have been proposing automatic sign language recognition systems to facilitate the learning of sign language, and nowadays, computer scientists have focused on using artificial intelligence in order to develop a system capable of reducing the communication gap between hearing and deaf people. In this paper, it is proposed a siamese convolutional neural network for American sign language alphabet recognition. This siamese architecture allows the computer to reduce the high interclass similarity and high intraclass variations. The results show that the proposed method outperforms the state of the art systems.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.