Data Driven and Psycholinguistics Motivated Approaches to Hate Speech Detection
DOI:
https://doi.org/10.13053/cys-24-3-3478Palabras clave:
Natural language processing, hate speech, aggressive language detectionResumen
Computational models of hate speech detection and related tasks (e.g., detecting misogyny, racism, xenophobia, homophobia etc.) have emerged as major Natural Language Processing (NLP) research topics in recent years. In the present work, we investigate a range of alternative implementations of three of these tasks - namely, hate speech, aggressive behaviour and target group recognition- by presenting a number of experiments involving different learning methods, including regularised logistic regression, convolutional neural networks (CNN) and deep bidirectional transformers (BERT), and using word embeddings, word n-grams, character n-grams and psycholinguistics-motivated (LIWC) features a like. Results suggest that a purely data-driven BERT model, and to some extent also a hybrid psycholinguisticly informed CNN model, generally outperform the alternatives under consideration for all tasks in both English and Spanish languages.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.