Leaf Identification Based on Shape, Color, Texture and Vines Using Probabilistic Neural Network

Autores/as

  • Adnan Mohsin Abdulazeez Presidency of Duhok Polytechnic University
  • Diyar Qader Zeebaree Research Center of Duhok Polytechnic University
  • Dilovan Asaad Zebari Research Center of Duhok Polytechnic University
  • Thamer Hassan Hameed University of Duhok, College of Agricultural Engineering Sciences

DOI:

https://doi.org/10.13053/cys-25-3-3470

Palabras clave:

Centroid-Radii, geometric feature extraction, principal component analysis, probabilistic neural network

Resumen

The importance of the plant for the human being and the environment led to deeply been studied and classified in detail. The advancement of the technology is the main factor in finding many ways for plant identification process. Some kind of initial intelligence systems in order to identify plant, followed by many theories and concepts using methods like; Moment Invariant (MI), Zernike Moments (ZM) and Polar Fourier Transform (PFT), and technologies for classification like; Neural Network (NN), K-Nearest Neighbor Classifier (KNN) and Support Vector Machine (SVM), were used by many researchers through past years. In this paper is Centroid-Radii (C-R) combined with geometric features of the leaves, in order to cover most of shape feature of the leaves, color moments and Grey-Level Co-occurrence Matrix (GLCM) to improve the accuracy of the system identification. in addition to the above features, Veins also involved in the method been used plus Principal Component Analysis (PCA), which is used to convert features into orthogonal features and the results were inputted to the classifiers that used Probabilistic Neural Network (PNN). Two datasets have been used for test, first dataset is created especially for this work and collected from 24 kinds of plants and second dataset is called Flavia which contains 32 kinds. The results were clearly improved to identify the plants. the maximum accuracy reached up to %98.50 when using the first data set and 98.16% for the second dataset.

Biografía del autor/a

Adnan Mohsin Abdulazeez, Presidency of Duhok Polytechnic University

Computer Science

Diyar Qader Zeebaree, Research Center of Duhok Polytechnic University

Computer Science

Dilovan Asaad Zebari, Research Center of Duhok Polytechnic University

Computer Science

Thamer Hassan Hameed, University of Duhok, College of Agricultural Engineering Sciences

Agricultural Engineering Sciences

Descargas

Publicado

2021-08-18

Número

Sección

Artículos