New Diversity Measures Based on the Coverage and Similarity of the Classification
DOI:
https://doi.org/10.13053/cys-25-3-3416Palabras clave:
Diversity measures, classifier ensemble, classifiersResumen
In supervised pattern classification, it often happens that a single individual classifier is not able to meet the requirements of the problem. This is the main reason that leads to the successful use of systems composed of several classifiers (classifier ensembles) looking to obtain better results than a single classifier. The selection of the classifiers to be used is difficult due to its great variety and to the presence of necessary conditions such as the diversity between them to obtain the best possible results. Specifically, the diversity among the classifiers continues being a crucial factor in these systems and the way of measuring it in an effective way is still an open field. There are different measures in literature that help to decide if a group of classifiers is diverse. Some methods explicitly use these measures to obtain more effective classifier ensembles. The obtained results show it is possible to find combinations of classifiers that assure a superior accuracy compare to the best individual accuracy. In this paper, we propose two new diversity measures based on the coverage and similarity of the classification. Our objective is to measure the diversity in a different way in search of better results. We show several experiments where the behavior of the proposed diversity measures is analyzed. Also, we present the correlation that exists among the propose measures and other measures, including the classifier ensemble accuracy.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.