Order Embeddings for Supervised Hypernymy Detection
DOI:
https://doi.org/10.13053/cys-24-2-3390Palabras clave:
Hypernymy, word embedding, order embedding, neural network, siamese networkResumen
In this work we present a supervised approach to partially order word embeddings, through a learned order embedding, and we apply it in supervised hypernymy detection. We use neural network as an order embedding to map general purpose word embeddings to a partially ordered vector set. The mapping is trained using positive and negative instances of the relationship. We consider two alternatives to deal with compound terms: a character based embedding of an underscored version of the terms, and a convolutional neural network that consumes the word embedding of each term. We show that this distributional approach presents interesting results in comparison to other distributional and path-based approaches. In addition, we observe still good behavior on different sized portions of the training data. This may suggest an interesting generalization capability.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.