Single-Stage Refinement CNN for Depth Estimation in Monocular Images
DOI:
https://doi.org/10.13053/cys-24-2-3370Palabras clave:
Depth reconstruction, convolutional neural networks, single stage training, embedded refinement layer, stereo matchingResumen
Depth reconstruction from single monocular images has been a challenging task due to the complexity and the quantity of depth cues that images have. Convolutional Neural Networks (CNN) have been successfully used to reconstruct depth of general object scenes; however, proposed works use several stages of training which make this process more complex and time consuming. As we aim to build a computational efficient model, we focus on single-stage training CNN. In this paper, we propose five different models for solving this task, ranging from a simple convolutional network, to one with residual, convolutional, refinement and upsampling layers. We compare our models with the current state of the art in depth reconstruction and measure depth reconstruction error for different datasets (KITTI, NYU), obtaining improvements in both global and local error measures.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.