Text Classification using gated fusion of n-gram features and semantic features
DOI:
https://doi.org/10.13053/cys-23-3-3278Palabras clave:
Text classification, convolution neural network, universal sentence encoder, BiLSTMResumen
We introduce a novel method for text classification based on gated fusion of n-gram features and semantic features of the text. The parallel CNN network captures the n-gram relation between the words based on the filter size, primarily short distance multi-word relations. Whereas for semantic relation-ship, universal sentence encoder or BiLSTM is used. Gated fusion is used to combine n-gram and semantic features. The model is evaluated on 4 commonly used benchmark datasets (MR, TREC, AG-News and SUBJ), which includes sentiment analysis and question classification. The proposed method is able to surpass the existing state-of-the-art DNN architectures for text classification on these datasets.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.