Ontology-based Extractive Text Summarization: The Contribution of Instances
DOI:
https://doi.org/10.13053/cys-23-3-3270Palabras clave:
Extractive text summarization, ontologies, ontological instancesResumen
In this paper, we present a text summarization approach focusing on multi-document, extractive and query-focused summarization that relies on an ontology-based semantic similarity measure, that specifically explores ontology instances. We employ the DBpedia Ontology and a theoretical definition of similarity to determine query-sentence and sentence-sentence similarity. Furthermore, we define an instance-linking strategy that builds the most accurate sentence representation possible while achieving a better coverage of sentences that can be represented by ontology instances. Using primarily this instances linking strategy, the semantic similarity measure and the Maximal Marginal Relevance Algorithm- MMR - we propose a summarization model that is capable of avoiding redundancy from a more fine-grained representation of sentences, due to the irrepresentation as ontology instances. We demonstrate that our summarizer is capable of achieving compelling results when compared with relevant DUC systems and recently published related studies using ROUGE metrics. Moreover, our experiments lead us to a better understanding of how ontology instances can be used to represent sentences and what is the role of said instances in this process.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.