Identification of POS Tag for Khasi Language based on Hidden Markov Model POS Tagger
DOI:
https://doi.org/10.13053/cys-23-3-3248Palabras clave:
Natural language processing (NLP), computational linguistic, part of speech (POS), POS tagger, Hidden Markov Model (HMM)Resumen
Computational Linguistic (CL) becomes an essential and important amenity in the present scenarios, as many different technologies are involved in making machines to understand human languages. Khasi is the language which is spoken in Meghalaya, India. Many Indian languages have been researched in different fields of Natural Language Processing (NLP), whereas Khasi lacks substantial research from the NLP perspectives. Therefore, in this paper, taking POS tagging as one of the key aspects of NLP, we present POS tagger based on Hidden Markov Model (HMM) for Khasi language. In this present preliminary stage of building NLP system for Khasi, with the analyses of the categories and structures of the words is started. Therefore, we have designed specific POS tagsets to categories Khasi words and vocabularies. Then, the POS system based on HMM is trained by using Khasi words which have been tagged manually using the designed tagsets. As ambiguity is one of the main challenges in POS tagging in Khasi, we anticipated difficulties in tagging. However, by running with the first few sets of data in the experimental data by using the HMM tagger we found out that the result yielded by this model is 76.70% of accurate.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.