Joint Learning of Named Entity Recognition and Dependency Parsing using Separate Datasets
DOI:
https://doi.org/10.13053/cys-23-3-3247Palabras clave:
Joint Learning, named entity recognition, dependency parsing, turkishResumen
Joint learning of different NLP-related tasks is an emerging research eld in Machine Learning. Yet, most of the recent models proposed on joint learning require a dataset that is annotated jointly for all the tasks involved. Such datasets are available only for frequently used languages. In this paper, we propose a novel BiLSTM CRF based joint learning model for dependency parsing and named entity recognition tasks, which has not been employed before for Turkish to the best of our knowledge. This enables joint learning of various tasks for languages that have limited amount of annotated datasets. Our model, tested on a frequently used NER dataset for Turkish, has comparable results with the state-of-the-art systems. We also show that our proposed model out performs the joint learning model which uses a single dataset.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.