Refining Concepts by Machine Learning
DOI:
https://doi.org/10.13053/cys-23-3-3242Palabras clave:
Machine learning, supervisor, Transparent Intensional Logic, TIL, refinement, generalization, specialization, hypothesis, heuristicsResumen
In this paper we deal with machine learning methods and algorithms applied in learning simple concepts by their refining or explication. The method of refining a simple concept of an object O consists in discovering a molecular concept that defines the same or a very similar object to the object O. Typically, such a molecular concept is a professional definition of the object, for instance a biological definition according to taxonomy, or legal definition of roles, acts, etc. Our background theory is Transparent Intensional Logic (TIL). In TIL concepts are explicated as abstract procedures encoded by natural language terms. These procedures are defined as six kinds of TIL constructions. First, we briefly introduce the method of learning with a supervisor that is applied in our case. Then we describe the algorithm ‘Framework’ together with heuristic methods applied by it. The heuristics is based on a plausible supply of positive and negative (near-miss) examples by which learner’s hypotheses are refined and adjusted. Given a positive example, the learner refines the hypothesis learnt so far, while a near-miss example triggers specialization. Our heuristic methods deal with the way refinement is applied, which includes also its special cases generalization and specialization.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.