Reasoning over Arabic WordNet Relations with Neural Tensor Network
DOI:
https://doi.org/10.13053/cys-23-3-3240Palabras clave:
Arabic wordNet, natural language processing, neural tensor network, AraVec, word representation, word embeddingResumen
Arabic WordNet is an important resource for many tasks of natural language processing. However, it suffers from many problems. In this paper, we address the problem of the unseen relationships between words in Arabic WordNet. More precisely, we focus on the ability for new relationships to be learned ‘automatically’ in Arabic WordNet from existing relationships. Using the Neural Tensor Network, we investigate how it can be an advantageous technique to fill the relationship gaps between Arabic WordNet words. With minimum resources, this model delivers meaningful results. The critical component is how to represent the entities of Arabic WordNet. For that, we use AraVec, a set of pre-trained distributed word representation for the Arabic language. We show how much it helps to use these vectors for initialization. We evaluated the model, using a number of tests which reveal that semantically-initialized vectors provide considerable greater accuracy than randomly initialized ones.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.