Computational Modeling of the Interactions of Drugs with Human Serum Albumin (HSA)
DOI:
https://doi.org/10.13053/cys-22-4-3085Palabras clave:
Computer-aided drug design, modeling, dockingResumen
Human serum albumin (HSA) is the most abundant protein in the circulatory system that shows a remarkable capacity to bind a wide range of drugs impacting their therapeutic effect. Therefore, the binding to HSA represents a fundamental factor to consider when designing and developing new drugs. Although biophysical techniques (e.g. spectroscopy) are commonly employed to measure the extent to which drugs bind to HSA, these methods are time consuming and usually extremely expensive. Hence, there is an urgent need to incorporate more efficient methods in an attempt to streamline the development of new drugs. Here we present the implementation of a robust and cost-effective computational method to the prediction of the binding affinity of drugs towards HSA. Our method incorporates the program AutoDock Vina to perform in silico molecular docking of a highly diverse set of drugs against the 3D crystal structure of HSA. The 3D structure of HSA was retrieved from the Protein Data Bank and prepared to be used as receptor in our docking simulations. 3D structures of drugs were generated and optimized using Open Babel. Our protocol using AutoDock Vina as the docking engine was capable of reproducing the binding mode of indoxyl sulfate within the X-ray crystal structure of HSA (RMSD < 2.0 Å). In addition, our protocol correlated accurately predicted affinity values with experimentally determined association constants (r2=0.61). Our computational-based molecular docking approach incorporating AutoDock Vina may prove useful to the prediction of the binding affinities of drugs towards human serum albumin, and thus, could help alleviate a major bottleneck of the drug discovery process.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.