Towards Product Attributes Extraction in Indonesian e-Commerce Platform
DOI:
https://doi.org/10.13053/cys-22-4-3073Palabras clave:
Attributes extraction, e-commerce, product title, Named-Entity Recognition, Indonesian languageResumen
Product attribute extraction is an important task in e-commerce domain. Extracting pairs of attribute label and value from free-text product descriptions can be useful for many tasks, such as product matching, product categorization, faceted product search, and product recommendation. In this paper, we present a study of attribute extraction from Indonesiane-commerce product titles. We annotate 1,721 product titles with 16 attribute labels. We apply supervised learning technique using CRF algorithm. We propose combination of lexical, word embedding, and dictionary features to learn the attribute using joint extraction model. Our model achieves F1-measure 47.30% and 68.49% respectively for full match and partial match evaluation. Based on the experiment, we find that doing attributes extraction on more various number and diverse attributes simultane ously does not necessarily give worse result compared to extraction on less number of attributes.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.