Feature Extraction for Token Based Word Alignment for Question Answering Systems
DOI:
https://doi.org/10.13053/cys-22-4-3070Palabras clave:
Structural feature, question alignment, feature score, alignment scoreResumen
Mapping between the source words and the target words in a set of parallel sentences are acrucial part of Question Answering (QA) systems. If an accurate aligner is used in QA systems then efficiency of these systems also gets increased. We purpose the aligner which despite using very less lexical resources gives very good results in terms of precision, recall and F1. Previous aligners either uses more lexical resources or uses very less lexical resources. Hence, we have used POS TAG and WordNet as lexical resources. But some words whose meaning we may not know but these occur in a similar distribution and by observing their distribution these words are similar. Consider two sentences ”Lambodar is the son of Parvati” and ”Ganesha is the son of Parvati”. Here we will not find the meaning of Lambodar and Ganesha in Wordnet but since they have similar distributions so they should be aligned. For these words, we used Distribution Similarity Feature in our word aligner. This distributional similarity helps our aligner in broader coverage of words. Previous aligners were having recall in the range of 75-86 but this aligner has recall in the range of 88.4-93.3. Similarly, Exact match of previous aligners was in the range of21-35.3 but the proposed aligner’s exact match range is 46.1-58.6. Similarly F-measure and precision have also increased.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.