A New System for Brain Segmentation and Classification based in Three Dimensional Convolutional Neural Network: 3D-CNN
DOI:
https://doi.org/10.13053/cys-24-4-3058Palabras clave:
Brain tumor, segmentation, deep learning, convolutional neural networksResumen
We consider the problem of fully automatic brain tumor segmentation in MR images containing glioblastomas. We propose a three Dimensional Convolutional Neural Network (3D-CNN) approach that achieves high performance while being extremely efficient, a balance that existing methods have struggled to achieve. Our 3D-Brain CNN is formed directly on raw image modalities and thus learn a characteristic representation directly from the data. We propose a new cascading architecture with two pathways that each model normal details in tumors. Fully exploiting the convolutional nature of our model also allows us to segment a complete cerebral image in one minute. In experiments on the 2013 and 2015 BRATS challenge dataset; we exhibit that our approach is among the most powerful methods in the literature, while also being very effective.Descargas
Archivos adicionales
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.