Towards BIMAX: Binary Inclusion-MAXimal Parallel Implementation for Gene Expression Analysis

Autores/as

  • Angélica Alejandra Serrano Rubio Centro de Investigación y de Estudios Avanzados
  • Amilcar Meneses Viveros Centro de Investigación y de Estudios Avanzados
  • Guillermo B. Morales Luna Centro de Investigación y de Estudios Avanzados
  • Mireya Paredes López Universidad de las Américas Puebla, Departamento de Computación, Electrónica y Mecatrónica

DOI:

https://doi.org/10.13053/cys-1-1-2979

Palabras clave:

Biclustering, clustering, gene expression, high-performance computing, parallelism

Resumen

Differential gene expression analysis and clustering techniques have been current tools to study the relation between a gene and biological processes. Since a group of genes may show co-expression under certain conditions, biclustering techniques have been used to find sets of genes sharing similar expression patterns. We present an analysis of the performance of the BIMAX: Binary Inclusion-MAXimal sequential biclustering algorithm. Its performance is evaluated using synthetic datasets. Finally, we propose a strategy of parallelization for optimizing the performance of the BIMAX using parallel programming techniques.

Biografía del autor/a

Angélica Alejandra Serrano Rubio, Centro de Investigación y de Estudios Avanzados

Researcher

Descargas

Publicado

2020-03-25

Número

Sección

Artículos