Learning to Answer Questions by Understanding Using Entity-Based Memory Network
DOI:
https://doi.org/10.13053/cys-21-4-2845Palabras clave:
Text comprehension, entity memory network, question answeringResumen
This paper introduces a novel neural network model for question answering, the entity-based memory network. It enhances neural networks ability of representing and calculating information over a long period by keeping records of entities contained in text. The core component is a memory pool which comprises entities states. These entities states are continuously updated according to the input text. Questions with regard to the input text are used to search the memory pool for related entities and answers are further predicted based on the states of retrieved entities. Entities in this model are regard as the basic units that carry information and construct text. Information carried by text are encoded in the states of entities. Hence text can be best understood by analysing its containing entities. Compared with previous memory network models, the proposed model is capable of handling fine-grained information and more sophisticated relations based on entities. We formulated several different tasks as question answering problems and tested the proposed model. Experiments reported satisfying results.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.