New Similarity Function for Scientific Articles Clustering based on the Bibliographic References

Autores/as

  • Lisvandy Amador Penichet Universidad Central “Marta Abreu” de Las Villas Instituto de Biotecnología de las Plantas
  • Damny Magdaleno Guevara Universidad Central “Marta Abreu de Las Villas”, Departamento de Computación
  • María Matilde García Lorenzo Universidad Central “Marta Abreu de Las Villas”, Departamento de Computación

DOI:

https://doi.org/10.13053/cys-22-1-2763

Palabras clave:

Scientific paper, similarity function, clustering

Resumen

The amount of scientific information available on the Internet, corporate intranets, and other media is growing rapidly. Managing knowledge from the information that can be found in scientific publications isessential for any researcher. The management of scientific information is increasingly more complex and challenging, since documents collections are generally heterogeneous, large, diverse and dynamic. Overcoming these challenges is essential to give to the scientists the best conditions to manage the time required to process scientific information. In this work, we implemented a new similarity’s function for scientific articles' clustering in based on the information provided by the references of the articles. The use of this function contributes significantly to discover relevant knowledge from scientific literature.

Biografía del autor/a

Lisvandy Amador Penichet, Universidad Central “Marta Abreu” de Las Villas Instituto de Biotecnología de las Plantas

Reserva Científica, Dirección de Postgrado y Gestión de la Información.

Descargas

Publicado

2018-03-30