LinearTag Models: Recommendations Using Linear User Profiles Based on Tags
DOI:
https://doi.org/10.13053/cys-21-1-2579Palabras clave:
Collaborative tagging systems, recommender systems, taggingResumen
Recommender systems allow the exploration of large collections of products, the discovery of patterns in the products, and the guidance of users towards products that match their interests. Collaborative tagging systems allow users to label products in a collection using a free vocabulary. The aggregation of these tags, also called a Folksonomy, can be used to build a collective characterization of the products in a simple and recognizable vocabulary. In this paper, we propose a family of methods called LinearTag recommenders, which infer users preferences for tags to formulate recommendations for them. We dubbed these inferred user profiles as TagProfiles. We present experiments using them as an interaction artifact that allows users to receive new recommendations as they delete, add or reorder tags in their profiles. Additional experiments using the Movielens dataset, show that the proposed methods generate recommendations with an error margin similar, or even lower than the results reported by methods based on latent factors. Next, we compared TagProfiles against KeywordProfiles, which are profiles based on keywords extracted automatically from textual descriptions of products. This comparison showed that TagProfiles are not only more precise in their predictions, but they are also more understandable by users. At last, we developed a user interface of a movie recommender based on TagProfiles, which we tested with 25 users. This experience showed that TagProfiles are easier to understand and modify by users, allowing them to discover new movies as they interact with their profiles.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.