Microcalcifications Detection using Image Processing
DOI:
https://doi.org/10.13053/cys-22-1-2560Palabras clave:
Microcalcifications, image processing, breast cancerResumen
Breast cancer is the most common cause of death in women and the second leading cause of cancer deaths worldwide. Primary prevention in the early stages of the disease becomes complex as the causes remain almost unknown. However, some typical signatures of this disease, such as masses and microcalcifications appearing on mammograms, can be used to improve early diagnostic techniques, which is critical for women’s quality of life. X-ray mammography is the main test used for screening and early diagnosis, and its analysis and processing are the keys to improving breast cancer prognosis. In this work, an effective methodology to detect microcalcifications in digitized mammograms is presented. This methodology is based on the synergy of image processing, pattern recognition and artificial intelligence. The methodology consists in four stages: image selection, image enhancement and feature extraction based on mathematical morphology operations applying coordinate logic filters, image segmentation based on partitional clustering methods such as k-means and self organizing maps and finally a classifier such as an artificial metaplasticity multilayer perceptron. The proposed system constitutes a promising approach for the detection of Microcalcifications. The experimental results show that the proposed methodology can locate Microcalcifications in an efficient way. The best values obtained in the experimental results are: accuracy 99.93% and specificity 99.95%, These results are very competitive with those reported in the state of the art.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.