A Hybrid Approach for Solving Dynamic Bi-level Optimization Problems
DOI:
https://doi.org/10.13053/cys-22-2-2557Palabras clave:
Dynamic Bi-level Optimization, Coevolutionary algorithms, Differential Evolution, Self-adaptation, Hybrid MetaheuristicsResumen
Several real-life decision scenarios are hierarchical, which are commonly modeled as bi-level optimization problems (BOPs). As other decision scenarios, these problems can be dynamic, that is, some elements of their mathematical model can change over time. This kind of uncertainty imposes an extra level of complexity on the model, since the algorithm needs to find the best bi-level solution over time. Despite the importance of studying these problems, the literature reflects just a few works on dynamic bi-level optimization problems (DBOPs). In this context, this work addresses the solution of DBOPs from the viewpoint of metaheuristic methods. Our hypothesis is that, by hybridizing successful solving approaches from both bi-level and dynamic optimization fields, an effective method for DBOPs can be obtained. In this regard, we propose a hybrid method that combines a coevolutionary approach and a self-adaptive, multipopulation algorithm. Experimental results assert our hypothesis, specially for certain information exchange mechanisms.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.