Unsupervised Methods to Improve Aspect-Based Sentiment Analysis in Czech
DOI:
https://doi.org/10.13053/cys-20-3-2469Palabras clave:
Aspect-based sentiment analysis, latent semantics.Resumen
We examine the effectiveness of several unsupervised methods for latent semantics discovery as features for aspect-based sentiment analysis (ABSA). We use the shared task definition from SemEval 2014. In our experiments we use labeled and unlabeled corpora within the restaurants domain for two languages: Czech and English. We show that our models improve the ABSA performance and prove that our approach is worth exploring. Moreover, we achieve new state-of-the-art results for Czech. Another important contribution of our work is that we created two new Czech corpora within the restaurant domain for the ABSA task: one labeled for supervised training, and the other (considerably larger) unlabeled for unsupervised training. The corpora are available to the research community.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.