A Counting Logic for Trees

Autores/as

  • Everardo Barcenas Universidad Politécnica de Puebla

DOI:

https://doi.org/10.13053/cys-19-2-1999

Palabras clave:

Automated reasoning, modal logics, arithmetical constraints, XPath

Resumen

It has been recently shown that the fully enriched μ-calculus, an expressive modal logic, is undecidable. In the current work, we prove that this result does not longer hold when considering finite tree models. This is achieved with the introduction of an extension of the fully enriched μ-calculus for trees with numerical constraints. Contrastively with graded modalities, which restrict the occurrence of immediate successor nodes only, the logic introduced in this paper can concisely express numerical constraints on any tree region, as for instance the ancestor or descendant nodes. In order to show that the logic is in EXPTIME, we also provide a corresponding satisfiability algorithm. By succinct reductions to the logic, we identify several decidable extension of regular tree languages with counting and interleaving operators. It is also shown that XPath extensions with counting constructs on regular path queries can be concisely captured by the logic. Finally, we show that several XML reasoning problems (XPath queries with schemas), such as emptiness and containment, can be optimally solved with the satisfiability algorithm.

Biografía del autor/a

Everardo Barcenas, Universidad Politécnica de Puebla

Experiencia Laboral2013 a la fecha: Profersor-Investigador de Tiempo Completo en la Universidad Politécnica de Puebla.2013 a la fecha: Coordinador de la Maestría en Sistemas y Cómputo Inteligente de la Universidad Politécnica de Puebla.2011 a 2012: Investigador asociado en el Departamento de Ciencias de la Computación de la Universidad Rice.2007 a 2010: Investigador asistente en el Instituto Nacional de Investigación en Ciencias de la Computación y Control de Francia (INRIA).Estudios:Dr. en Computación. Université de Grenoble. 2011.M. C. en Lógica Computacional: Technische Universitat Wien y Universidade Nova de Lisboa. 2007.Lic. en Computación: Universidad Autónoma de Puebla. 2005. 

Descargas

Publicado

2015-06-01

Número

Sección

Reporte de tesis doctoral