Detección de ruido y aprendizaje basado en información actual
DOI:
https://doi.org/10.13053/cys-18-1-1593Palabras clave:
Limpieza de ruido, flujo de datos, aprendizaje semi-supervisado, concept drift.Resumen
Los métodos de limpieza de ruido tienen una gran significación en tareas de clasificación y en situaciones en las que es necesario realizar un aprendizaje semi-supervisado, debido a la importancia que tiene contar con muestras bien etiquetadas (prototipos) para clasificar nuevos patrones. En este trabajo, presentamos un nuevo algoritmo de detección de ruido en flujos de datos, que tiene en cuenta los cambios de los conceptos en el tiempo (concept drift), el cual está basado en criterios de vecindad, y su aplicación en la construcción automática de conjuntos de entrenamiento. En los experimentos realizados se utilizaron bases de datos sintéticas y reales, las últimas fueron tomadas del repositorio UCI, los resultados obtenidos avalan nuestra estrategia de detección de ruido en flujos de datos y en procesos de clasificación.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.