Segmentation Strategies to Face Morphology Challenges in Brazilian-Portuguese/English Statistical Machine Translation and Its Integration in Cross-Language Information Retrieval
DOI:
https://doi.org/10.13053/cys-19-2-1550Palabras clave:
Morphology, factored-based machine translation, cross-language information retrievalResumen
The use of morphology is particularly interesting in the context of statistical machine translation in order to reduce data sparseness and compensate a lack of training corpus. In this work, we propose several approaches to introduce morphology knowledge into a standard phrase-based machine translation system. We provide word segmentation using two different tools (COGROO andMORFESSOR) which allow reducing the vocabulary and data sparseness. Then, to these segmentations we add the morphological information of a POSlanguage model. We combine all these approaches using a Minimum Bayes Risk strategy. Experiments show significant improvements from the enhanced system over the baseline system on the Brazilian-Portuguese/English language pair. Finally, we report a case study of the impact of enhancing the statistical machine translation system with morphology in a cross-language application system such as ONAIR which allows users to look for information in video fragments through queries in natural language.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.