Ethical Challenges in Demand Prediction: A Case Study in the Wholesale Grocery Sector
DOI:
https://doi.org/10.13053/cys-29-1-5534Keywords:
Demand prediction, ethical challenges, artificial intelligence in retail, AI ethics, ethical AI frameworkAbstract
Artificial Intelligence (AI) has emergedas a transformative tool in inventory management and demand prediction within the wholes ale grocerysector. By leveraging machine learning algorithms, businesses can analyze historical sales data, market trends, and seasonal variations to optimize inventory levels, reducing overstock and stockouts. AI-drivendemand prediction models provide accurate forecasts, enabling whole salers to anticipate customer needs and streamline supply chain operations. Thisarticle examines the ethical challenges associated with developing and implementing AI-driven demand prediction models in the wholesale grocery sector. As businesses seek to optimize their operations through artificial intelligence, significant ethical concerns arise that must be addressed to ensure responsible and fair implementation. This case study highlights the main ethical challenges identified in a grocery wholesaler, focusing on issues such as transparency, accountability, fairness, and human control. Through the analysis of aspecific demand prediction model, we discuss how these ethical concerns not only influence user acceptance of the model but also impact operational efficiency and customer satisfaction. The article aims to contribute to the ongoing dialogue on ethics in data science, providing insights and recommendations for companies looking to adopt predictive technologies ethically.Downloads
Published
2025-03-24
Issue
Section
Articles of the Thematic Section (2)
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.