Generation of Feature Vectors for Identifying Medical Entities in Spanish

Autores/as

  • Gabriela A. García-Robledo Universidad Autónoma Metropolitana
  • Alma Delia Cuevas-Rasgado Universidad Autónoma del Estado de México, Centro Universitario Texcoco
  • Maricela Bravo Universidad Autónoma Metropolitana, Unidad Azcapotzalco
  • José A. Reyes-Ortiz Universidad Autónoma Metropolitana, Unidad Azcapotzalco

DOI:

https://doi.org/10.13053/cys-29-3-5002

Palabras clave:

Information Extraction, Named Entity Recognition, Natural Language Processing

Resumen

Natural Language Processing (NLP) encompasses a range of high impact techniques for enabling computers to interact with humans in a more natural manner. One such technique is the extraction of entities, which allows computers to identify relevant information within a text. This paper presents a methodology for the recognition of medical entities within a texts written in Spanish. The methodology combines syntactic, semantic, and contextual features at the word level. The principal objective of a feature-based approach is the identification of drug, anatomy, and disease entities. A training evaluation was conducted on two types of machine learning algorithms, with an accuracy of 98\% on an external set. Additionally, an accuracy check was performed for each medical class.

Biografía del autor/a

Gabriela A. García-Robledo, Universidad Autónoma Metropolitana

Alumna de Doctorado en Ciencias de la Computación de la Universidad Autónoma del Estado de México, Centro Universitario Texcoco

Alma Delia Cuevas-Rasgado, Universidad Autónoma del Estado de México, Centro Universitario Texcoco

Profesora-Investigadora de la Universidad Autónoma del Estado de México, Centro Universitario Texcoco

Maricela Bravo, Universidad Autónoma Metropolitana, Unidad Azcapotzalco

Profesora-Investigadora de la Universidad Autónoma Metropolitana, Unidad Azcapotzalco

José A. Reyes-Ortiz, Universidad Autónoma Metropolitana, Unidad Azcapotzalco

Profesor-Investigador de la Universidad Autónoma Metropolitana, Unidad Azcapotzalco

Descargas

Publicado

2025-09-25