Performance of the Classification of Critical Residues at the Interface of BMPs Complexes Pondered with the Ground-State Energy Feature using Random Forest Classifier
DOI:
https://doi.org/10.13053/cys-27-1-4537Keywords:
Hot spots, hot regions, BMPs, DFT, RFCAbstract
This work is focused on implementing and evaluating the Random Forest Classifier (RFC), among other classical machine learning models, on predicting the residues at the interface of protein-protein interactions (PPI) that contribute most of the binding free energy (called hot spots and hot regions). The dataset comprises twenty-nine bone morphogenetic proteins (BMPs) complexes from the Protein Data Bank (PDB). We used just six features such as B-factor, hydrophobicity index, prevalence score, accessible surface area (ASA), conservation score, and the ground-state energy of the amino acids, which were calculated using the Density Functional Theory (DFT). Proving and testing several machine learning methods, we selected the RCF because of its better performance using classical classification metrics and tests. An optimal parameter selection of the RFC reached a better performance using this dataset with around 90 % with the correct class assigned (hot spot & hot region / non-hot spot hot region) residues.Downloads
Published
2023-03-30
Issue
Section
Articles of the Thematic Section
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.