Automatic Detection of Vehicular Traffic Elements based on Deep Learning for Advanced Driving Assistance Systems
DOI:
https://doi.org/10.13053/cys-27-3-4508Keywords:
YOLOv3, automobile detection assistance, object recognition, deep learningAbstract
This paper presents a prototype of an automobile driver assistance system based on YOLOv3. The system detects car types, traffic signs, and traffic lights in real-time and warns the driver accordingly. In the learning phase of the YOLO algorithm, the standard weights are learned first, followed by transfer learning to the objects of interest. The retraining phase uses 2,800 images obtained from the Internet of three countries of the real-life, and the testing phase uses real-time videos of Mexico City roads. In the validation phase, the proposed system achieves 95%, 37%, and 40% performance on the compiled dataset for the detection of road elements. The results obtained are comparable and in some cases better than those reported in previous works. Using a Raspberry Pi 4, the prototype was tested in real-life, generating visual and audible warnings for the driver, with an object recognition rate of 0.4 fps. A mean average precision (mAP) of 53% was reached by the proposed system. The experiments showed that the prototype achieved a poor recognition rate and required high computational processing for object recognition. However, YOLO is a model that can have good performance on low-resource hardware.Downloads
Published
2023-09-25
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.