Classification of Paintings by Artistic Style Using Color and Texture Features
DOI:
https://doi.org/10.13053/cys-26-4-4022Keywords:
ANN, PCA, artistic style, classification, color features, paintings, texture featuresAbstract
In this paper, an approach for the classification of paintings by artistic style using color and texture features is proposed. Our approach automatically extracts a set of visual features that effectively discriminate among diverse artistic styles. Additionally, our proposal performs an effective selection of the most relevant features to be used in an artificial neural network architecture. Using the most important features allows our system to achieve an efficient learning process. The proposed system analyzes digitized paintings using acombination of color and texture features, which have shown to be highly discriminatory. Our approach consists of two main stages: training and testing. Firstly, in the training stage, the features from seven artistic styles are extracted to train a multi-layer perceptron. Secondly, the learned model is utilized to determine the artistic style of a given incoming painting to our system. The experimental results, on an extensive dataset of digitized paintings, show that our method obtains a higher accuracy in comparison with those obtained by the state-of-the-art methods. Moreover, our proposal attains a higher accuracy rate using fewer features descriptors.Downloads
Published
2022-12-25
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.