Diet Recommendation according to Kilocalories and People’s Tastes

Authors

  • Flor C. Cárdenas-Mariño Universidad Nacional Mayor de San Marcos
  • Hugo D. Calderon-Vilca Universidad Nacional Mayor de San Marcos
  • Vladimiro Quispe Ibañez Universidad Nacional del Altiplano
  • Hesmeralda Rojas Universidad Nacional Micaela Bastidas

DOI:

https://doi.org/10.13053/cys-27-3-3983

Keywords:

Healthy diet, fuzzy logic, first-order logic, diet recommendation

Abstract

Malnutrition and eating disorders are a latent problem in our society which are generated by an inadequate combination of foods either by lack of time, money, knowledge or a specialist who can help to properly manage food with the macronutrients necessary for good nutrition. In this research we present an architecture of diet recommendation using fuzzy logic and first-order logic, the research is divided into three phases: first, people’s data such as age, weight, height, physical activity level and gender were taken into account to obtain the required daily kilocalories using fuzzy logic; second, we considered as a knowledge base the menu plan for breakfast, mid-morning snack, lunch, mid-afternoon snack and dinner according to the tastes of the person for the first order logic; third, using a selection algorithm, a daily menu plan according to its kilocalories and the list of menus obtained with the first order logic are recommended. To validate the proposed architecture, Kaggle’s Cardiovascular Disease Detection dataset has been taken from which 500 people data have been taken for the research, the preferences of each person have been added to the dataset, finally the prototype recommends the diet for the 500 people according to the required kilocalories, the average kilocalories required are 1776 and the average kilocalories of the recommended menus are 1864, being the difference of 88 kilocalories, we conclude that our prototype based on the proposed architecture performs a proper recommendation.

Author Biographies

Flor C. Cárdenas-Mariño, Universidad Nacional Mayor de San Marcos

Docente de la Universidad Nacional Mayor de San Marcos, cursos a cargo Algoritmos y Estructura de Datos, miembro del Grupo de Investigación Inteligencia Artificial.Docente de la Universidad Peruana de Ciencias Aplicadas - UPC en la Escuela de Ciencias de la Computación, cursos a cargo Algoritmos y Estructura de Datos.

Hugo D. Calderon-Vilca, Universidad Nacional Mayor de San Marcos

Doctor en Ciencia de la Computación, profesor investigador del Grupo "Inteligencia Artificial" de la Universidad Nacional Mayor de San Marcos, asesor de proyectos de tesis de posgrado y pregrado relacionadas a Redes Neuronales, Machine Learning y Procesamiento de Lenguaje Natural.

Vladimiro Quispe Ibañez, Universidad Nacional del Altiplano

Profesor universitario de la Facultad de Ingeniería Estadística e Informática de la UNA - Puno, miembro activo del Instituto de Investigación en Ciencias de la Computación de la Escuela de Post-Grado, Primer investigador calificado a nivel nacional como REGINA (CONCYTEC). Primer Director General de Investigación de VRI, Par revisor de artículos científicos de investigación. Áreas de investigación de informática, industrias alimentarias, y estructuras.

Hesmeralda Rojas, Universidad Nacional Micaela Bastidas

Ingeniero Informático y de Sistemas, docente en la Universidad Nacional Micaela Bastidas de Apurímac.

Downloads

Published

2023-09-25

Issue

Section

Articles