Multimodal Learning Based Spatial Relation Identification
DOI:
https://doi.org/10.13053/cys-24-3-3773Keywords:
Spatial role labeling, spatial relation identification, multimodal learning, multi layer perceptronAbstract
Spatial Relation identification is one of the integral parts of Spatial Information Retrieval. It deals with identifying the spatially related objects in view of their physical orientation or placement with respect to each other. The concept is widely used in many fields such as Robotics, Image Caption Generation and many more such areas. In this work the focus is to gather information from multiple modalities such as Image and its corresponding Text so as to strengthen the learning process for the identification of Spatial Relation pairs from a given text. Two different multimodal approaches are proposed in this work. In the first approach, information is explored as a sequential learning process where the individual Spatial Roles are identified as connected entities, which makes the Spatial Relation retrieval easy and efficient enough. To counter the small size of the dataset along with necessity to avoid overfitting, an efficient backward propagation based Neural Network was used to classify the candidate roles and the relations. The feature selection was different for all the classification tasks. Building on the selected feature from the first approach, the second approach uses a transfer learning method that utilizes an existing image caption generation model to retrieve the vital topic based information from image which is then used for the task. Thereby both approaches used information from two modalities which are further used to train the system in the respective approach. The model achieves state-of-the-art performance in terms of Precision for two of the Spatial Roles identification. This validates the advantage of using multimodal learning when compared with other partial-multimodal processes.Downloads
Published
2020-09-29
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.