Epileptic Signal Detection Using Quilted Synchrosqueezing Transform Based Convolutional Neural Networks
DOI:
https://doi.org/10.13053/cys-25-2-3461Keywords:
Epileptic EEG signals, convolutional neural networks, SST-QSTFTAbstract
This work proposes a convolutional neural networks-based algorithm to classify electroencephalographic signals (EEG) in normal, preictal and ictal classes to supporting to the physicists to diagnose the epilepsy condition. EEG signals are preprocessed through the application of the synchrosqueezing transform based on the quilted short time Fourier transform (SS-QSTFT) to generate a time-frequency representation, which is the input to the convolutional neural network (CNN). CNN based classifiers are traine dusing the EEG database of the University of Bonn, which have five sets identified as A, B, C, D and E. Normal, preictal and ictal classes were composed with the combination of the sets A-B, C-D and E, respectively. Accuracy, sensitivity and specificity of the best CNN-based classifier were 99.61, 99.10 and 98.99, respectively. Furthermore, another support vector machines (SVM)-based classifier was developed using the previous CNN model as feature extractor, which last output layer was removed. Input features to the SVM were taken from the fully-connected layer of the CNN. SVM were trained using the same data (time-frequency representation) utilized to train the previous CNN, and their performance in accuracy, sensitivity and specificity were 100% for training and testing sets.Downloads
Published
2021-05-01
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.