Exploring Convolutional Neural Networks Architectures for the Classification of Hand-Drawn Shapes in Learning Therapy Applications
DOI:
https://doi.org/10.13053/cys-24-4-3359Keywords:
Bender dataset, convolutional neural networks, automatic classification of Bender drawingsAbstract
A positive consequence of the existence of a more inclusive society is the appearance of protocols to help identify those in need. One of these protocols is the application of tests with the aim to detect learning disabilities in children so that opportune intervention could be made. These advances, though, also pose challenges to the responsible to administer these tests, for example, the large number of tests to evaluate that make the process lengthy at the best. In this study, we implement a Convolutional Neural Network (CNN) model for the automatic classification of hand-drawn drawings of the Bender Gestalt Test (BGT), which is a test that evaluates the perceptual-motor maturity and perceptual disorder on individuals. In BGT, nine different drawings are presented to the patient who must reproduce them using pencil and paper. This study focuses on the automatic detection of the traces and their classification, then aiming to expedite the test evaluation process. Our proposed task-specialized CNN, named CNN4-Bender, is compared against other eleven neural-network based models registering an average performance of 91.56%, surpassed only by ResNet50 but with a high computational cost in this last one. To further evaluate our model we also consider other classification tasks that include the MNIST and OIHACDB datasets, where the CNN4-Bender architecture obtains a competitive performance and in some cases outperforms state-of-the-art models.Downloads
Published
2020-12-02
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.