Fuzzy Parameter Adaptation in Genetic Algorithms for the Optimization of Fuzzy Integrators in Modular Neural Networks for Multimodal Biometry
DOI:
https://doi.org/10.13053/cys-24-3-3329Keywords:
Genetics algorithms, fuzzy systems, modular neural networksAbstract
In this paper, we propose a new method for fuzzy adaptation of the Gap Generation and mutation parameters in Genetic algorithms to optimize Fuzzy Systems used as integration methods in modular neural networks for multimodal biometrics. The Genetic Algorithm is an optimization method inspired on the evolutionary ideas of natural selection and genetics; therefore, we propose an improvement to the convergence of the genetic algorithms using fuzzy logic. Simulation results show that the proposed approach improves the performance of Genetic Algorithms. A comparison of the proposed method using type-1 fuzzy logic for dynamic parameter adaptation with respect to the original Genetic Algorithms approach is presented. Additionally, a statistical test is presented to prove the performance enhancement in the application provided by fuzzy parameter adaptation in the genetic algorithm. The main contribution in this work is the fuzzy adaptation of parameters in the genetic algorithm using type-1 fuzzy logic and with this finding the optimal values of the parameters of the fuzzy integrators, to improve the recognition percentage of the modular neural network for multimodal biometrics.Downloads
Published
2020-09-29
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.