Dialectones: Finding Statistically Significant Dialectal Boundaries Using Twitter Data
DOI:
https://doi.org/10.13053/cys-22-4-3104Palabras clave:
Dialectometry, nonparametric method, corpus-based dialectometry, Hilbert-Schmidt independence criterion, Wilcoxon signed-rank test, ecotone, dialectoneResumen
Most NLP applications assume that a particular language is homogeneous in the regions where it is spoken. However, each language varies considerably throughout its geographical distribution. To make NLP sensitive to dialects, a reliable, representative and up-to-date source of information that quantitatively represents such geographical variation is necessary. However, some of the current approaches have disadvantages such as the need for parameters, the disregard of the geographical coordinates in the analysis, and the use of linguistic alternations that presuppose the existence of specific dialectal varieties.Detection of ``ecotones'' is an analogous problem in the field of ecology that focuses on the identification of boundaries, instead of regions, in ecosystems facilitating the construction of statistical tests. We adapted the concept of ``ecotone'' to ``dialectone'' for the detection of dialectal boundaries by using two non-parametric statistical tests: the Hilbert-Schmidt independence criterion (HSIC) and the Wilcoxon signed-rank. The proposed method was applied to a large corpus of Spanish tweets produced in 160 locations in Colombia through the analysis of unigram features. The resulting dialectones showed to be meaningful but difficult to compare against regions identified by other authors using classical dialectometry. We concluded that the automatic detection of dialectones is convenient alternative to classical methods in dialectometry and a potential source of information for automatic language applications.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.