Automatic Opinion Extraction from Short Hebrew Texts using Machine Learning Techniques
DOI:
https://doi.org/10.13053/cys-22-4-3071Keywords:
Automatic classification, machine learning, sentiment analysisAbstract
Sentiment analysis deals with classifying written texts according to their polarity. Previous research in this topic has been conducted mostly for Latin languages, and no research has been done for Hebrew. This is important because it turns out that the task of text classification is extremely language-dependent. Furthermore, the work on sentiment analysis for English texts was mostly performed on relatively long documents. In this work, we focus specifically on classifying Modern Hebrew sentences according to their polarity. We compare various Machine Learning algorithms and techniques of classification. We added optimizations and methods that have not previously been used, and adjusted commonly used techniques so they would suit a Hebrew corpus. We elaborate on the differences in classifying short texts versus long ones and about the uniqueness of working specifically with Hebrew. Finally, our model achieved nearly 93% accuracy, which is higher than accuracies achieved previously in this field.Downloads
Published
2018-12-30
Issue
Section
Articles of the Thematic Section
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.