Automated Drowsiness Detection Through Facial Features Analysis
DOI:
https://doi.org/10.13053/cys-23-2-3013Keywords:
Facial expression, drowsiness detection, circular Hough transform, Haar features, band power, empirical mode decompositionAbstract
The lack of concentration, caused by fatigue, is the most factor of the increasing number of accidents. In the last few years, the development of an automatic system which based on facial expression analysis, to controls the driver fatigue and prevents him in advance from accidents, has received a growing interest in all intelligent vehicle systems. In This paper, we propose and compare two methods to detect the driver drowsiness state. These methods extracts geometric features using video to characterize eyes blinking as a nonstationary and nonlinear signal. The first method is based on Cumulative Blink Signal analysis technique”CBS” which locates and analyses the eyes blinking from the obtained nonstationary and nonlinear signal to detect the driver drowsiness state. The second method is based on IFD technic ”Intinsic Functions Decompositionof the nonstationary and nonlinear signal to analyse the nonstationary and nonlinear signal by using the combination between the two methods: Empirical mode decomposition (EMD) and Band Power(BP). For both proposed methods, this analysis is confirmed by the support Vector Machine (SVM) to classify the state ofdriver fatigue. The synthesis results obtained by both methods CBS and IFD are discussed and compared to those of the literature.Downloads
Published
2019-06-27
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.