Content-based SMS Classification: Statistical Analysis for the Relationship between Features Size and Classification Performance
DOI:
https://doi.org/10.13053/cys-21-4-2593Keywords:
Short text classification, content-based SMS spam filtering, SMS classification, dimension reduction, feature selection, support vector machine, ANOVAAbstract
High dimensionality of the feature space is one of the difficulty that affect short message service(SMS) classification performance. Some studies used feature selection methods to pick up some features, while other studies used the full extracted features. In this work, we aim to analyse the relationship between features size and classification performance. For that, a classification performance comparison was carried outbetween ten features sizes selected by varies feature selection methods. The used methods were chi-square, Gini index and information gain (IG). Support vector machine was used as a classifier. Area Under the ROC (Receiver Operating Characteristics) Curve between true positive rate and false positive rate was used to measure the classification performance. We used the repeated measures ANOVA at p < 0.05 level to analyse the performance. Experimental results showed that IG method outperformed the other methods in all features sizes. The best result was with 50% of the extracted features. Furthermore, the results explicitly showed that using larger features size in the classification does not mean superior performance but sometimes leads to less classification performance. Therefore, feature selection step should be used. By reducing the used features for the classification, without degrading the classification performance, it means reducing memory usage and classification time.Downloads
Published
2017-12-23
Issue
Section
Articles of the Thematic Issue
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.