An Efficient Heuristic Applied to the K-means Algorithm for the Clustering of Large Highly-Grouped Instances
DOI:
https://doi.org/10.13053/cys-22-2-2548Keywords:
K-means algorithm, computational comple- xity, heuristic.Abstract
With the increasing presence of Big Data there arises the need to group large instances. These instances present a number of objects with multidimensional features, which require to be grouped in hundreds or thousands of clusters. This article presents a new improvement to the K-means algorithm, which is oriented to the efficient solution of instances with a large number of clusters and dimensions. This heuristic is called Honeycomb (HC) and it is based on the relationship between the number of dimensions and the number of centroids that form a neighborhood. That is, the heuristic allows the reduction of the number of distance calculations for each object. The heuristic was validated by solving a set of synthetic instances obtaining reductions in execution time of up to 90% and a quality reduction of less than 1%, with respect to standard K-means. For real instances of low and high dimensionality, HC obtained a reduction of execution time between 84.74% and 95.44% with a quality reduction between 1.07% and 1.62%, respectively. The experimental results are encouraging because this heuristic would benefit those domains that require instances with a continuous increase of the number of objects, dimensions and clusters.Downloads
Published
2018-06-30
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.